×
思维导图备注
机器学习实战:基于Scikit——Learn和TensorFlow (O’Reilly精品图书系列) - 奥雷利安·杰龙
首页
收藏书籍
阅读记录
书签管理
我的书签
添加书签
移除书签
O’Reilly Media,Inc.介绍
浏览
6
扫码
小字体
中字体
大字体
2022-02-22 02:41:24
请
登录
再阅读
上一篇:
下一篇:
O’Reilly Media,Inc.介绍
译者序
前言
第一部分 机器学习基础
什么是机器学习
为什么要使用机器学习
第2章 端到端的机器学习项目
使用真实数据
观察大局
获取数据
从数据探索和可视化中获得洞见
机器学习算法的数据准备
选择和训练模型
微调模型
网格搜索
启动、监控和维护系统
试试看
练习
机器学习系统的种类
第3章 分类
MNIST
训练一个二元分类器
性能考核
多类别分类器
错误分析
多标签分类
多输出分类
练习
机器学习的主要挑战
第4章 训练模型
线性回归
梯度下降
多项式回归
学习曲线
正则线性模型
练习
测试与验证
第5章 支持向量机
线性SVM分类
非线性SVM分类
SVM回归
工作原理
训练目标
练习
练习
第6章 决策树
决策树训练和可视化
做出预测
估算类别概率
CART训练算法
计算复杂度
基尼不纯度还是信息熵
正则化超参数
回归
不稳定性
练习
第7章 集成学习和随机森林
投票分类器
bagging和pasting
Random Patches和随机子空间
随机森林
提升法
堆叠法
练习
第8章 降维
数据降维的主要方法
PCA
核主成分分析
局部线性嵌入
其他降维技巧
练习
第二部分 神经网络和深度学习
安装
创建一个计算图并在会话中执行
第10章 人工神经网络简介
从生物神经元到人工神经元
用TensorFlow的高级API来训练MLP
使用纯TensorFlow训练DNN
微调神经网络的超参数
练习
管理图
第11章 训练深度神经网络
梯度消失/爆炸问题
重用预训练图层
快速优化器
通过正则化避免过度拟合
实用指南
练习
节点值的生命周期
第12章 跨设备和服务器的分布式TensorFlow
一台机器上的多个运算资源
多设备跨多服务器
在TensorFlow集群上并行化神经网络
练习
TensorFlow中的线性回归
第13章 卷积神经网络
视觉皮层的组织结构
卷积层
池化层
CNN架构
练习
实现梯度下降
第14章 循环神经网络
循环神经元
TensorFlow中的基本RNN
训练RNN
深层RNN
LSTM单元
GRU单元
自然语言处理
练习
给训练算法提供数据
第15章 自动编码器
高效的数据表示
使用不完整的线性自动编码器实现PCA
栈式自动编码器
使用堆叠的自动编码器进行无监控的预训练
去噪自动编码器
稀疏自动编码器
变分自动编码器
其他自动编码器
练习
保存和恢复模型
第16章 强化学习
学习奖励最优化
策略搜索
OpenAI gym介绍
神经网络策略
评估行为:信用分配问题
策略梯度
马尔可夫决策过程
时间差分学习与Q学习
使用深度Q学习玩吃豆人游戏
练习
致谢
用TensorBoard来可视化图和训练曲线
命名作用域
模块化
共享变量
练习
附录A 练习答案
附录B 机器学习项目清单
附录C SVM对偶问题
附录D 自动微分
附录E 其他流行的ANN架构
作者介绍
封面介绍
暂无相关搜索结果!
×
二维码
手机扫一扫,轻松掌上学
×
《机器学习实战:基于Scikit——Learn和TensorFlow (O’Reilly精品图书系列) - 奥雷利安·杰龙》电子书下载
请下载您需要的格式的电子书,随时随地,享受学习的乐趣!
EPUB 电子书
×
书签列表
×
阅读记录
阅读进度:
0.00%
(
0/0
)
重置阅读进度