×
思维导图备注
MachineLearningfortheWeb
首页
收藏书籍
阅读记录
书签管理
我的书签
添加书签
移除书签
Generalized linear models
浏览
9
扫码
小字体
中字体
大字体
2022-01-24 10:26:12
请
登录
再阅读
上一篇:
下一篇:
Machine Learning for the Web
Table of Contents
Machine Learning for the Web
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Preface
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
1. Introduction to Practical Machine Learning Using Python
Preparing, manipulating and visualizing data – NumPy, pandas and matplotlib tutorials
Scientific libraries used in the book
When to use machine learning
Summary
2. Unsupervised Machine Learning
Dimensionality reduction
Singular value decomposition
Summary
3. Supervised Machine Learning
Generalized linear models
Naive Bayes
Decision trees
Support vector machine
A comparison of methods
Hidden Markov model
Summary
4. Web Mining Techniques
Web content mining
Natural language processing
Postprocessing information
Summary
5. Recommendation Systems
Similarities measures
Collaborative Filtering methods
CBF methods
Association rules for learning recommendation system
Log-likelihood ratios recommendation system method
Hybrid recommendation systems
Evaluation of the recommendation systems
Summary
6. Getting Started with Django
Writing an app – most important features
Admin
Summary
7. Movie Recommendation System Web Application
Models
Commands
User sign up login/logout implementation
Information retrieval system (movies query)
Rating system
Recommendation systems
Admin interface and API
Summary
8. Sentiment Analyser Application for Movie Reviews
Search engine choice and the application code
Scrapy setup and the application code
Django models
Integrating Django with Scrapy
PageRank: Django view and the algorithm code
Admin and API
Summary
Index
暂无相关搜索结果!
×
二维码
手机扫一扫,轻松掌上学
×
《MachineLearningfortheWeb》电子书下载
请下载您需要的格式的电子书,随时随地,享受学习的乐趣!
EPUB 电子书
×
书签列表
×
阅读记录
阅读进度:
0.00%
(
0/0
)
重置阅读进度